The primary focus of the chapters that we read from *Strength in Numbers* was creating equity and access to mathematics in the secondary education classroom. In the theme of making mathematics accessible to all students, I found an article about using modeling in the high school classroom, called “Mathematical modeling in the high school curriculum” (link: http://www.nctm.org/Publications/Mathematics-Teacher/2016/Vol110/Issue5/Mathematical-Modeling-in-the-High-School-Curriculum/). Mathematical modeling is centered around “using mathematical approaches to understand and make decisions about real-world phenomena.” Utilizing this type of instruction, the teacher will give students a real-world problem that they will come up with multiple solutions to. In the article, the example given is centered around comparing different prices of gas at gas stations, and if it is more economical for a driver to drive outside of their “usual” region to find gas. Problems such as the example given are what the concept of modeling focuses on. Using this type of instruction in the mathematics classroom reminded me of the chapters from *Strength in Numbers *in the essence that utilizing modeling can help to make mathematics more accessible to students. Modeling focuses on making connections from mathematics to the outside world, making it more meaningful to the students. Furthermore, it aligns with the principle of asking students to see themselves in the mathematics that they are learning. In modeling, students are asked to use and develop problem solving skills to investigate a given scenario that applies to their day-to-day lives. The concept is reminiscent of project-based learning (PBL) but on a much smaller scale.

It asks students to perform tasks similar to that of PBL, but from the description in the article, modeling should take place over one to two class periods. The concept of modeling in itself asks students to apply their learning to real-world situations, deepening their understanding of the material. A portion of the article focuses on the teacher’s role in modeling. It addresses questions that the teacher should be asking him/herself before the lesson begins, such as what other resources students may need access to in order to properly address the question that the model gives the students. This indicates the preparation that should go into preparing a modeling activity for the students in the classroom. The article prompted me to consider how much of an influence giving students the opportunity to integrate their learning into real world problems can have on their learning. At the end of the article, a is quoted who describes her appreciation for having the opportunity to model in her mathematics classroom because it helped her to “remember the math.” Modeling gives students to apply what they have learned in their classes outside of the classroom, as they will eventually do as adults.

In my own classroom, I can use the information gathered in this article about how to model, and the benefits of modeling in the mathematics classroom to integrate modeling into my curriculum as a teacher. As we discussed in class, I would be sure to give students the opportunity to work in small, random groups to exploit the skills of each individual student. Giving students an opportunity to apply their thinking is a common theme in recent articles read, and in the assigned reading for class, as well as what research has supported in the past. It gives students real-world applications to what they are learning, answering the perpetual question “when are we going to use this in real life?” This article was further support for me to ensure that I create a classroom centered around applications for the mathematics that students will learn. Doing this will not only give them an opportunity to apply their learning, but will help them gain a deeper understanding of the mathematics that they are learning, and thus retain the information gained for a longer period of time. Altogether, this makes mathematics more accessible to the students, as it aligns with the ideal in *Strength in Numbers*. Modeling in itself can be changed to fit what the teacher utilizing it needs for their classroom (i.e. a model can be made shorter or longer, what the model is will depend on what is being learned in the classroom, and how frequently the teacher uses models to apply student learning).

Paired with ideas that I noticed in the article that I wrote about last week, as well as what I learned in my Curriculum and Instruction (C&I) class, I began to wonder about the impacts of modeling, or PBL on students in classes. In my C&I class we visited New Tech in Sioux Falls, and those students had significantly lower standardized test scores than other schools in Sioux Falls in the mathematics subject area. Modeling gives students an opportunity to use problem solving, but not to the extent that PBL does. It also inherently employs aspects of an equitable classroom, aiming to make the mathematics more accessible to all students. Thus, I questioned how deeply modeling affects students in the classroom. I found a study through an online database where modeling was utilized in one differential equations course while another professor used a traditional lecture technique in his differential equations course. The study found that on the same final exam, students in the class that used modeling as a instruction technique had a mean score 12.4% higher than the students in the traditional classroom. Although the study admits that it was “quasi-experimental,” it still gives serious implications to the usefulness of modeling in the classroom. Link: https://www.sciencedirect.com/science/article/pii/S073231231630147X

References

Hernández, M., Levy, R., Felton-Koestler, M., & Zbiek, R. M. (2016). Mathematical modeling in the high school curriculum. *Mathematics Teacher*, *110*(5), 336-342.